N31 Nd³⁺-doped phosphate glass for high energy applications

N31 phosphate glass is specially developed for high power laser facility. At present, it has been successfully applied in *Shen Guang* II and *Shen Guang* III system. Glass slab up to 900mm×500mm×70mm can be produced at SIOM, and is the most popular laser glass in China. More than 1500 pieces of edge Cladding N31 glass with size up to 810mm×460mm×40mm have been used in high power laser facilities in China, and has been applied in several laser facilities in US and Europe.

Laser Specifications

 Nd_2O_3 (wt%) Nd^{3+} conc. (10²⁰ions/cm³) Cross section for stimulated emission (10⁻²⁰cm²)

Lifetime at 1053nm (µsec)

Effective bandwidth(nm) Fluorescence peak wavelength(nm)

Absorption coefficient (cm^{-1})

Optical Specifications

Non-linear refractive index coeff. $n_2(\times 10^{-13} e.s.u)$ Refractive index (1053nm) Abbe value dn/dT ($10^{-6}/^{\circ}$ C) (20~100°C)

Thermal Specifications

Transformation temp.(°C) Softening temp.(°C) Coeff.of linear thermal expansion (10⁻⁷/K) (30~100 Coeff.of linear thermal expansion (10⁻⁷/K) (30~300 Thermal coeff. of optical path length (10⁻⁶/K) (50~ Thermal conductivity (25°C) (W/m K) Specific heat (25°C) (J/g K)

Chemical Specifications

D_w (H₂O 98°C) (mg/(cm²/day))

Other Specifications

Density(g/cm³) Young's modulus (G Pa) Posson's ratio Knoop hardness (kg/cm²) Fracture toughness (MPa · m^{1/2})

*The homogeneity is about 2×10⁻⁶

Hand Hand Hand Hand Hand Hand Hand Hand	N31-4.0 N31-4.	
	3.5 3.4±0.1 3.8±0.1 ≥370 (Nd₂O₃ : 0.5wt%) ≥360 (Nd₂O₃ : 1.2wt%) ≥315 (Nd₂O₃ : 3.5wt%) ≥310 (Nd₂O₃ : 4.2wt%)	
	25.4 1053 ≤0.0015 (1053nm) ≤0.25 (400nm) ≤1.5 (3333nm)	
	≤1.2 1.535±0.003 65.6 -4.3	
0°C) 0°C) ~100°C)	445 485 116 127 1.4 0.59 0.75	
	0.12	
	2.87 58.3 0.26 404 0.58	